Efficient emulators for scattering using eigenvector continuation
Eigenvector continuation (EC) has been shown to accurately and efficiently reproduce ground states for targeted sets of Hamiltonian parameters. It uses as variational basis vectors the corresponding ground-state eigensolutions from selected other sets of parameters. Here we extend the EC approach to scattering using the Kohn variational principle. We first test it using a model for S-wave nucleon-nucleon scattering and then demonstrate that it also works to give accurate predictions for non-local potentials, charged-particle scattering, complex optical potentials, and higher partial waves. These proofs-of-principle validate EC as an effective emulator for applying Bayesian inference to parameter estimation constrained by scattering observables.