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Background



“From First Principles”

• A subset of nuclear theorists works on ab initio methods.

• Goal: predict all nuclear properties from basic assumptions

• Take protons & neutrons as given; predict everything else.

• Desire a connection to the more fundamental theory: quantum chromodynamics
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The Precision Era

This work makes novel contributions to uncertainty quantification methods for nuclear

predictions.
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The Precision Era

• We’ve entered the precision era!

• → It’s time to worry about the details.

• Error bars aren’t just for experimentalists. . .

This work makes novel contributions to uncertainty quantification methods for nuclear

predictions.
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The Precision Era

Phys. Rev. A Editorial (April 2011)

Papers presenting the results of theoretical calculations are expected to include

uncertainty estimates. . .

• If the authors claim high accuracy, or improvements on the accuracy of

previous work.

• If the primary motivation for the paper is to make comparisons with

present or future high precision experimental measurements.

• If the primary motivation is to provide interpolations or extrapolations of

known experimental measurements.

This work makes novel contributions to uncertainty quantification methods for nuclear

predictions.
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Scales in Physics

Grav. force (short distances):

F = −mg

Grav. force (large distances):

F = −GMm

r2

???

The laws look quite different!
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Scales in Physics

Grav. force (short distances):

F = −mg

Grav. force (large distances):

F = −GMm

r2???
The laws look quite different!

Propagate full uncertainty
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Predictions in Low-Energy Nuclear Physics

• There is interesting physics at all

scales

• Fine details at one level of analysis do

not affect the physics at a coarser

level of analysis

• Start simple → add corrections to

reach desired precision.
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yexp(x) = yth(x , ~a) + δyth(x) + δyexp

To theorists, magic

Parameters

Discrepancy

fit
Full Prediction

Can we build this?

Can we use it?

Takeaway info about our δyth model:

Built in Results in

Physics-based ←→ Discovery

Energy degradation ←→ Emax insensitivity

Correlations ←→ Derivatives (& More!)

Smart priors ←→ Easy & analytic!
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Chiral EFT in One Slide

• VNN(~a) = VLO + VNLO + · · ·+ VNkLO =⇒ Schrödinger Eq. =⇒ yk(x ; ~a)

• One can change variables for convenience/insight.

• ∆yn = yrefcnQ
n

{y0}
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Real Life

Coefficients from NN scattering look like our toy model!
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Model Building

Main equation
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Gaussian Processes: How We Induct on the cn

What are Gaussian processes?

• An infinite dimensional generalization of the Gaussian distribution (??)

• A popular machine learning tool for non-parametric regression

µ

σ
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Quantifying Truncation Uncertainty

Inexpensive Prediction

Expensive Prediction Symmetry Constraints

y
0

y
1

y
2

y
3

13



Quantifying Truncation Uncertainty

Inexpensive Prediction Expensive Prediction

Symmetry Constraints

y
0

y
1

y
2

y
3

13



Quantifying Truncation Uncertainty

Inexpensive Prediction Expensive Prediction Symmetry Constraints

y
0

y
1

y
2

y
3

13



Beyond Truncation Errors
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The Equation of State

An important bridge from the nucleon-nucleon interaction to neutron-rich matter
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Saturation Properties

Using the Entem, Machleidt, and Nosyk potential with two momentum cutoffs:

Λ = 500 MeV Λ = 450 MeV
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Obtaining Derivatives

• Correlated errors permit derivatives

• The first rigorous uncertainty

propagation

• Furthermore, the convergence pattern

of E/N is correlated with that of E/A.

• So the uncertainty in

S2 = E/N − E/A is smaller than

naively expected
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Posterior for Low-Energy Constants

The truncation error model:

yexp(x) = yth(x , ~a) + δyth(x) + δyexp

With Bayes’ theorem, leads to

pr(~a | yexp) ∝ pr(yexp | ~a)× pr(~a)

pr(yexp | ~a) = N [yk(~a),Σexp + Σth]

This can be sampled using MCMC for full uncertainty propagation

21



What You Get for Free: Max Energy Insensitivity

• y axis: posterior median± 1σ

• x axis: max energy of data in fit

• Q, and hence δyth, grows with energy

δyth = yref

kmax∑
n=k+1

cnQ
n

• This weights high energy data less!

• Stabilizes LEC fit as a function of E

• Correlation assumptions can lead to

different results
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Compton Background

• Nuclear polarizabilities: a fundamental

property

• Can be probed by Compton scattering:

light off nucleon

E

π+ π+

π+

π+

π−

_  _  _  _  _  _  _  _  _  _  _  _  _  _  _

+ + + + + + + + + + + + + + + +
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But Where to Measure?

• Beam time is not cheap. . .

• Experimental difficulties vary

• Theoretical difficulties vary

• How do we balance these constraints?

• Plan effective experiments

• Test theory

E

π+ π+

π+

π+

π−

_  _  _  _  _  _  _  _  _  _  _  _  _  _  _

+ + + + + + + + + + + + + + + +
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Prior Work

• Grießhammer et al. (2018) EPJA

• Chart shows sensitivity of χEFT diff.

cross section at a range of energies

and angles.

• Looked at sensitivities of theory to

polarizabilities (think derivatives)

• Does not account for experimental

hardships or theory uncertainty

• Cannot estimate the utility of any

given experiment

26



Bayesian Experimental Design

• Includes experimental and correlated

theory errors

• Includes symmetry constraints on the

truncation error (0th, 1st, and 2nd

derivatives)

• Can answer questions like:

• Is extra precision worth the cost?

• Measure one point well or multiple

points less well?

• What is the benefit of jointly

constraining polarizabilities?

• . . .

27



The Effect of EFT Errors
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Is an Experiment Worth It?
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Takeaway Points

Truncation Model

• Truncation and interpolation

error informed by convergence

pattern

• Full error can be propagated,

using physics insight

• Permits learning of physical

quantities, e.g., Λb
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Thank you!

buqeye.github.io

https://buqeye.github.io/


Uncorrelated Posteriors

Assumes that the variance of the cn is independent at each point
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NN Scattering Errors (with Constraint)
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Model Checking Diagnostics

Does our model refer to reality? How can we check?

Assumptions

1. cn are iid stationary GPs

2. Error bands have statistical

meaning

Tests

1. Define a metric to measure

GP-ness

2. Credible interval diagnostic

• See Bastos & O’Hagan (2009) “Diagnostics for Gaussian Process Emulators”

• But we have multiple curves on which to test
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Mahalanobis Distance

• Measures distance from

mean, taking into account

covariance structure

D2
MD = (y −m)TΣ−1(y −m)

• Can decompose scalar D2
MD

into a vector DG using

Σ = GGT

DG = G−1(y −m)

DG can illuminate why some

curves fail

https://blogs.sas.com/content/iml/2019/03/25/geometry-

multivariate-univariate-outliers.html
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Mahalanobis Distance Real Example

EKM Semilocal (R = 0.9 fm). Total cross section
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Credible Interval Diagnostics

−10

0

10

20

30

0.25 0.5 0.75

x

−10

0

10

20

30

0.25 0.5 0.75

x

0 20 40 60 80 100

Credible Interval (100α%)

0

20

40

60

80

100

E
m

p
ir

ic
a
l

C
ov

er
a
g
e

(%
)


	Background
	Appendix
	Model Checking Diagnostics


