

Efficient emulators for three-body scattering using eigenvector continuation

Xilin Zhang The Ohio State University

INT Program 21-1b, Nuclear Forces for Precision Nuclear Physics, April 19 - May 7, 2021

Collaborators: R.J. Furnstahl, A.J. Garcia, P.J. Millican

Outline

- Introduction on emulators
- Eigenvector-Continuation (EC) emulators for nuclear structure calculations
- EC emulators for two-body scatterings
- EC emulators for three-body scatterings
- Generalizations, including a connection with ab initio scattering and reaction calculation
- Summary and outlook

Emulator

- Model fitting/error propagation → solving the model at many points in its parameter space
- A bottleneck issue: high computational cost for solving models
- Need efficient and accurate emulators for models (train the emulators using training points and then make predictions at other points)
- Applications in nuclear physics:
 - Many-body bound-state calculations
 - Few-body scattering and reactions calculations
 - Fitting Chiral three-nucleon interactions to the proton-deuteron scattering data
 - Data fittings involving deuteron-nucleus scattering and reactions, e.g., A(d,p)B and A(d,n)B

Parameter 1

EC emulators for bound state calculations

D. Frame, et.al., *Eigenvector continuation with subspace learning*, *Phys.Rev.Lett.* **121**, 032501 (2018) **1711.07090**

 $\widehat{H}(\boldsymbol{\theta}) = \widehat{T} + \widehat{V}(\boldsymbol{\theta})$ depending on $\boldsymbol{\theta}$

 $\widehat{H}(\boldsymbol{\theta}_i) \rightarrow |\psi_{\mathrm{gs}}(\boldsymbol{\theta}_i)\rangle \qquad |\psi_{\mathrm{gs}}(\boldsymbol{\theta}_i)\rangle$ live in a low-dimension Hilbert space

Construct emulators based on variational calculation method

S. König, et.al., Eigenvector Continuation as an Efficient and Accurate Emulator for Uncertainty Quantification, Phys. Lett. B **810**, 135814 (2020) 1909.08446; A. Ekström and G. Hagen, Global sensitivity analysis of bulk properties of an atomic nucleus, Phys.Rev.Lett. **123** 252501 (2019) <u>1910.02922</u> Ground state energy

Construct trial WFs: $|\psi_{\text{trial}}\rangle = \sum_{i=1}^{N_b} c_i |\psi_{\text{gs}}(\boldsymbol{\theta}_i)\rangle$ Ground state WF $\sum_{k} (H_{jk} - \lambda N_{jk}) c_k = 0$ $H_{ij}(\boldsymbol{\theta}) \equiv \langle \psi_{gs}(\boldsymbol{\theta}_i) | \hat{H}(\boldsymbol{\theta}) | \psi_{gs}(\boldsymbol{\theta}_j) \rangle$ $\delta \left[\langle \psi_{\text{trial}} | \hat{H}(\boldsymbol{\theta}) | \psi_{\text{trial}} \rangle - \lambda \left(\langle \psi_{\text{trial}} | \psi_{\text{trial}} \rangle - 1 \right) \right] = 0$ $N_{ij}(\boldsymbol{\theta}) \equiv \langle \psi_{\mathrm{gs}}(\boldsymbol{\theta}_i) | \psi_{\mathrm{gs}}(\boldsymbol{\theta}_i) \rangle$

 N_{h} -dim linear algebra \rightarrow fast emulator calculations

Emulators for two-body scattering based on Kohn variational method R. J. Furnstahl, A. J. Garcia, P. J. Millican, and XZ, *PLB* **809**, 135719 (2020) [2007.03635]

There exists a functional: $\beta [|\psi_{trial}\rangle] = \tau_{trial} - 2\mu \langle \psi_{trial} | \hat{H}(\theta) - E | \psi_{trial} \rangle$ μ as the reduced mass with an asymptotic condition $r\psi_{\text{trial}}(r) \xrightarrow{r \to \infty} \sin(pr - \ell\pi/2)/p + \tau_{\text{trial}}\cos(pr - \ell\pi/2)$ With the exact scattering WF $\implies \beta \left[|\psi_{\text{exact}} \rangle \right] = \frac{1}{p} [\tan \delta_{\ell}(E)]_{\text{exact}} \equiv \tau_{\text{exact}}$ $\delta\beta[|\psi_{\text{exact}}\rangle] = 0 + O[(\delta|\psi\rangle)^2]$ Plugging a trial WF gives • τ_i is related to the For emulators, construct $|\psi_{
m trial}
angle = \sum c_i |\psi_E(m{ heta}_i)
angle$ out of the WFs at training points phase shift of the *i*th training point i=1 λ is a Lagrange • At the stationary point, c_i staisifies $\sum_{i=1}^{J} \left(\Delta U^{\mathsf{T}} + \Delta U \right)_{ij} c_j = \tau_i - \lambda$ multiplier ΔU_{ij} integral vanishes $\Delta U_{ij} \equiv 2\mu \langle \psi_E(\boldsymbol{\theta}_i) | \hat{H}(\boldsymbol{\theta}) - E | \psi_E(\boldsymbol{\theta}_j) \rangle$ outside the strong interaction range

12/7/2020

N_b -dim linear algebra \rightarrow fast emulator calculations

Generalization to three-body scattering: below breakup threshold (S wave)

For three identical spin-0 bosons, $H = T_r + T_R + V_{2-body} + V_{3-body}$

Suppose V_{2-body} gives a two-body (dimer) bound state ϕ_b

Compute the boson-dimer scattering. The scattering WF

$$\Psi(\boldsymbol{r_1}, \boldsymbol{R_1}) \xrightarrow{R_1 \to \infty} \phi_b(\boldsymbol{r_1}) \frac{1}{\sqrt{v}} \left[-e^{-iP_1R_1} + S e^{iP_1R_1} \right]$$

The functional estimates the scattering S-matrix:

$$\beta[\Psi_{\text{trial}}] = S_{\text{trial}} - \frac{1}{3i} \left\langle \Psi_{\text{trial}} \middle| \widehat{H}(\boldsymbol{\theta}) - E \middle| \Psi_{\text{trial}} \right\rangle$$

The two-body emulator can be generalized to emulate $H(\theta)$ with varying V_{3-body} but with V_{2-body} fixed

Separable V_{2-body} , e.g., $V_{23} = \lambda |g\rangle \langle g|$ $\langle q_1 | g \rangle \propto e^{-q_1^2/(2\Lambda^2)}$

Separable V_{3-body} : $V_4 = \lambda_4 |g_4\rangle \langle g_4|$ $\langle \mathbf{P_1} \mathbf{q}_1 | g_4 \rangle \propto e^{-(q_1^2 + \frac{3}{4}P_1^2)/(2\Lambda_4^2)}$

Mass as nucleon mass

 $oldsymbol{r}_1$, $oldsymbol{q}_1$

 $oldsymbol{R}_1$, $oldsymbol{P}_1$

Vary 3-body potential strength λ_4

Vary 3-body potential strength λ_4

Vary 3-body potential strength λ_4

Vary both λ_4 and range Λ_4

Fix V_{2-body} ($\Lambda = 200$ MeV) to get dimer binding energy at 10 MeV

The emulator's relative errors using different training sets

> Phase shifts of one test point and a series of sets of training points (picked using Latin Hypercube sampling)

Vary both λ_4 and range Λ_4

Relative errors at more test points

- - The blue dots: one training-point set
 - Crosses are test points

 $N_b = 3$

|S| - 1

 $N_b = 6$

|S| - 1

 $N_{b} = 9$

|S| - 1

 $N_b = 12$ |S| - 1

 $N_{b} = 14$

|S| - 1

```
With N_b = 6, the relative
errors become 10^{-4} at
most
```

Accuracy

Randomly sample 200 test points

blue crosses: interpolation 500 basis red ones: extrapolations × int. 400 A₄ (MeV) × extr. 300 200 100 -0.25 0.50 -0.500.00 0.25 λ_4

> |S| - 1 (emulator's violation of unitarity) gives a conservative estimate of the emulators' errors

> > 7.5

10.0

 $-- N_b = 3$

 $\dots N_b = 9$

 $N_{b} = 6$

 $N_{b} = 12$

 $-- N_b = 14$

Efficiency

	Full calculation	EC-emulator
Computing time (in seconds) per scattering energy on a laptop	3 (10^3 for realistic calculations)	0.01 $(10^{-3} \text{ for } N_b \text{-dim linear algebra })$

- Simplified full calculations
- Typical cost of a realistic calculation: hours
- The emulator cost is from computing ΔU (the N_b -dim linear algebra cost is much smaller)
- If only varying λ_4 , ΔU cost is eliminated. The emulator cost (the linear algebra) is 10^{-3} s (on a laptop). This low cost applies to realistic calculations.
- The above scenario → fitting Chiral three-nucleon interactions to proton-deuteron scattering data
- In general, the potential's parametric dependence can be linearized to reduce the ΔU -cost. (exploring new ideas)

Generalization to varying two-body interactions

Generalization to three-body scattering: above breakup threshold

Few-Body Systems 30, 39-63 (2001)

PHYSICAL REVIEW D

VOLUME 5, NUMBER 6

Kohn-Type Variational Principle for Three-Body B

M. Lieber,[†] Leonard Rosenberg, and Larry Department of Physics, New York University, New York (Received 20 July 1971)

The Kohn Variational Principle for Elastic Proton-Deuteron Scattering Above Deuteron Breakup Threshold^{*}

M. Viviani¹, A. Kievsky¹, and S. Rosati^{1,2}

Generalization for fitting 3-N interaction to Lattice QCD calculations

© Springer-Verla Printed in Austria

Ab initio scattering/reaction calculations based on computer experiment For two-body scattering:

For two-body scattering: XZ, PRC.101.051602(R) (2020) [<u>1905.05275</u>]; XZ et.al., PRL 125, 112503 (2020) [<u>2004.13575</u>]

- Parallel studies in LQCD generalizing the Luscher method to 3-hadron (more analytical understanding)
- Computer experiment strategy (Faddeev + **data analysis tools** for 3-cluster) $\rightarrow V_{cn}, V_{cnn}$
- Emulators for higher bodysolvers, e.g., Gamow-shell model calculations

Summary and outlook

- EC emulators for the three-body scatterings are accurate and efficient
- Currently working on the emulators with varying V_{2-body}
- Reducing the cost of computing ΔU when the potential's parametric dependence is nonlinear
- Generalizations to reactions above the break-up threshold
- Implementations with realistic three-body calculations (both NN and nuclear calculations)
- Connection to discrete-spectrum calculations