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Why has the reach of these precision nuclear calculations increased?
• Effective field theory (EFT) and related techniques have enabled an 

explosion of new solution methods that grow polynomially with size
• New challenge: robust and verifiable theoretical error estimates
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Tower of emergent phenomena in nuclear physics

“Effective field theory ” (EFT)
• Systematic construction of 

nuclear forces used to 
make predictions

• Each order includes 
nontrivial functions; 
equations to be solved are 
highly nonlinear

• Expectation is that output 
results are expansions in a 
small parameter, but not a 
Taylor expansion



EFT and prior knowledge: A relativity Taylor-expansion analogy
Suppose Einstein didn’t develop relativity. 
The kinetic energy K(v2) of an electron 
would still deviate from the Physics 101 
formula.  How would we determine it from 
measurements at small speed v?
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EFT and prior knowledge: A relativity Taylor-expansion analogy

• Physics input: there is only one (unknown) scale of velocity in the problem; call it “c”

Suppose Einstein didn’t develop relativity. 
The kinetic energy K(v2) of an electron 
would still deviate from the Physics 101 
formula.  How would we determine it from 
measurements at small speed v?

Physics ⇒Taylor expansion in v2 only:

What do we know about the ai?

K(v2) ⇡ 1

2
mv2[a0 + a2v

2 + a4v
4 +O(v6)]

=) K(v2) ⇡ 1

2
mv2[b0 + b2(v/c)

2 + b4(v/c)
4 +O(1)(v/c)6 + · · · ]

• The expectation is that the bi are natural, meaning of order unity.
• We can check this case: b0 = 1, b2 = 3/4, b4 = 5/8, b6 = 35/64, … ⇒ natural!
• Model the discrepancy coefficient. Can we determine the breakdown scale c?



Previous UQ: Error bands in chiral EFT
Bands from EFT cutoff variation

below: neutron-proton 1S0 phase
shift at NLO, N2LO, and N3LO
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Previous UQ: Error bands in chiral EFT
Until recently, little examination of  theoretical uncertainties 
(cf. experimental UQ), which are systematic errors

Previous work used EFT cutoff (regulator parameter) 
variation to determine bands:

chiral EFT predictions for 
p–d spin observables

neutron-proton 1S0 
phase shifts at NLO, 

N2LO, and N3LO
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Previous UQ: Error bands in chiral EFT

Problems with this as UQ (see right figure):
• unnatural systematics of bands 
• often underestimates uncertainty 
• statistical interpretation???
• Is the EFT actually working?

Until recently, little examination of  theoretical uncertainties 
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Previous UQ: Error bands in chiral EFT

Problems with this as UQ (see right figure):
• unnatural systematics of bands 
• often underestimates uncertainty 
• statistical interpretation???
• Is the EFT actually working?

Until recently, little examination of  theoretical uncertainties 
(cf. experimental UQ), which are systematic errors

Previous work used EFT cutoff (regulator parameter) 
variation to determine bands:

chiral EFT predictions for 
p–d spin observables

neutron-proton 1S0 
phase shifts at NLO, 

N2LO, and N3LO

Motivated by naturalness to apply Bayesian statistics
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Having obtained a force, one needs to propagate uncertainties 
through nonlinear calculations (which are usually very expensive).

What kind of statistics problems do we have?



NN force 3N force

∆-less EFT ∆ contributions ∆-less EFT ∆ contributions

LO

NLO

N2LO

Parameter estimation (inverse problem)

Having obtained a force, one needs to propagate uncertainties 
through nonlinear calculations (which are usually very expensive).

What kind of statistics problems do we have?



“Bayesian model selection”: What are the best degrees of freedom?
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Truncation error (discrepancy): omitted higher-order diagrams
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through nonlinear calculations (which are usually very expensive).
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• Experimentalists have long been careful practitioners of statistics, but theorists 

have not.  In nuclear physics, the advent of precision calculations requires 

verifiable, robust theory UQ.  

• Interaction with statisticians has been invaluable, including members of the 

SciDAC NUCLEI project and participants in workshops such as the 4-week INT 

program on “Bayesian Statistics in Nuclear Physics”, e.g., Derek Bingham, Dave 

Higdon (INT co-organizer), Earl Lawrence, Ian Vernon, Frederi Viens, …

• A particularly exciting spin-off is we have found physics discovery with statistics!

Bayesian Uncertainty Quantification: Errors for Your EFT

Overall goal: 
Full uncertainty quantification (UQ) and associated 

diagnostics for EFT predictions using Bayesian statistics

a0!

a1!

0!

BUQEYE Collaboration!

Prior!
Posterior !
True value!

Dick Furnstahl (OSU)

Jordan Melendez (OSU) 

Matt Pratola (OSU Statistics)

Harald Griesshammer (GWU)

Daniel Phillips (OU)

Sarah Wesolowski (SU)



Representing an EFT expansion: Toy model example

• The yi are predictions depending on x (could be energy, scattering angle, …)
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Angular observables overall: as a function of angle at single energy

Does the toy model example look like the real world?

Use EKM semi-local interactions applied to NN scattering as example.
Eur. Phys. J. A 51, 53 (2015) and Phys. Rev. Lett. 115, 122301 (2015) 
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Does the toy model example look like the real world?

Use EKM semi-local interactions applied to NN scattering as example.
Eur. Phys. J. A 51, 53 (2015) and Phys. Rev. Lett. 115, 122301 (2015) 
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Representing an EFT expansion: Toy model example

• Can we derive                                                      ?
• Can we extract a posterior for the expansion parameter Q? 

pr(y|{y0, · · · , yk}, Q, yref)
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Error bands for real-world calculations: EKM, R = 0.9 fm

Seems systematic and reasonable.  How do we know it is working?
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Model checking: Credible interval diagnostics
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• Choose N predictions of observable (N=51)
• Here: total cross section at many energies
• How often does the (k+1)th prediction lie in 

the p% error band for prediction at kth order?

• Another check: vary expansion parameter
• ! > 1 indicates larger breakdown favored
• ! < 1 indicates smaller breakdown favored
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• Choose N predictions of observable (N=51)

• Here: total cross section at many energies

• How often does the (k+1)th prediction lie in 

the p% error band for prediction at kth order?

First time applied to effective field theories.  What other model checking?

• Another check: vary expansion parameter

• ! > 1 indicates larger breakdown favored

• ! < 1 indicates smaller breakdown favored



Physics discovery: What is the EFT breakdown scale?
pr(Lb|c): Total Cross Section

N3LO

pr(Lb|c): Differential Cross Section

N3LO

pr(Lb|c): Spin Observables

N3LO
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• First extraction of EFT breakdown scale from convergence pattern
• Accounting for correlations with GP yields more consistent results 



Bayesian Model Checking: identifying failures of physics
Melendez et al., PRC 96, 024003 (2017)

• Compare two choices of regulator parameter R.  Both give good fits to the NN 
data, but are they both behaving as expected from effective field theory?

• Look order-by-order for deviant behavior.  R=0.9 fm looks ok.



Bayesian Model Checking: identifying failures of physics
Melendez et al., PRC 96, 024003 (2017)

• Compare two choices of regulator parameter R.  Both give good fits to the NN 
data, but are they both behaving as expected from effective field theory?

• Look order-by-order for deviant behavior.  R=0.9 fm looks ok.
• But R=1.2 fm does not! ⇒ points to “regulator artifacts” that distort physics



How much data to use when fitting EFT parameters?

50 100 150 200 250 300
Emax [MeV]

0.0

0.4

0.8

1.2

C
1
P

1

c̄ =0.9

1P1 NLO

kmax = k + 1, corr.

kmax ! 1, corr.

�yth = 0

• An EFT calculation has smaller truncation errors 
at low energies but where to stop using data 
for parameter estimation?

• The 1P1 example shows a least squares fit with 
no truncation error (purple triangles and band) 
shows no stability in the parameter value as a 
function of the maximum energy used.

• But our discrepancy model (green) generates a 
stable prediction with a more robust 68% band.
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• An EFT calculation has smaller truncation errors 
at low energies but where to stop using data 
for parameter estimation?

• The 1P1 example shows a least squares fit with 
no truncation error (purple triangles and band) 
shows no stability in the parameter value as a 
function of the maximum energy used.

• But our discrepancy model (green) generates a 
stable prediction with a more robust 68% band.

• The 1S0 example shows that at high enough 
order, the parameters are well determined with 
or without the theory discrepancy model.



More physics discovery through statistics: Redundant operators

• One example (of many)  of how statistical 
analysis has led to physics discover, here 
while doing parameter estimation

• Projected posterior plots for NN 
parameters generally are close to Gaussian.
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parameters generally are close to Gaussian.

• When they are not, it is a signal to look for 
a physics reason.  Led us to a redundancy, 
not noticed for 10 years!
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• One example (of many)  of how statistical 
analysis has led to physics discover, here 
while doing parameter estimation

• Projected posterior plots for NN 
parameters generally are close to Gaussian.

• When they are not, it is a signal to look for 
a physics reason. Led us to a redundancy, 
not noticed for 10 years!.

• Eliminating removes 3 of 15 parameters 
and leads to much better interactions! 



Summary: Bayesian Statistics for EFTs
• In this era of precision nuclear physics, robust UQ for theoretical calculations has 

become essential, but development of appropriate tools is still in its infancy
• Bayesian statistical methods are particularly well suited for effective field theories
• Provides much more than just theoretical error bars ⇒ tools for physics discovery:

• Is the effective field theory behaving as advertised? Is there systematic 
improvement at the predicted rate?

• Identifies problematic implementations (e.g., are we dominated by regulator 
artifacts or are there redundant operators?)

• Stimulates new ideas such as breakdown scales and correlation length in 
energy or angle and enables their extraction

• …
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Many open problems to be addressed:
• Model selection opportunities still to be explored, e.g., which are the best degrees 

of freedom: nucleons + pions only, nucleons + deltas + pions, nucleons only, …
• Alternative model checking methods
• Parameter estimation with curve-wise discrepancy model
• Exploring the physics application of the GP hyperparameters 
• Full propagation of uncertainties to very expensive many-body calculations
• …
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• In this era of precision nuclear physics, robust UQ for theoretical calculations has 

become essential, but development of appropriate tools is still in its infancy
• Bayesian statistical methods are particularly well suited for effective field theories
• Provides much more than just theoretical error bars ⇒ tools for physics discovery:

• Is the effective field theory behaving as advertised? Is there systematic 
improvement at the predicted rate?

• Identifies problematic implementations (e.g., are we dominated by regulator 
artifacts or are there redundant operators?)

• Stimulates new ideas such as breakdown scales and correlation length in 
energy or angle and enables their extraction

• …

Many open problems to be addressed:
• Model selection opportunities still to be explored, e.g., which are the best degrees 

of freedom: nucleons + pions only, nucleons + deltas + pions, nucleons only, …
• Alternative model checking methods
• Parameter estimation with curve-wise discrepancy model
• Exploring the physics application of the GP hyperparameters 
• Full propagation of uncertainties to very expensive many-body calculations
• …

Interactions with statisticians are invaluable!



Thank you!
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Some BUQEYE publications on UQ for EFT

o “A recipe for EFT uncertainty quantification in nuclear physics”,  J. Phys. G 42, 
034028 (2015)

o “Quantifying truncation errors in effective field theory”,  Phys. Rev. C 92, 024005 
(2015)   [with Natalie Klco]

o “Bayesian parameter estimation for effective field theories”,   J. Phys. G 43, 
074001 (2016)

o “Bayesian truncation errors in chiral EFT: nucleon-nucleon observables”, Phys. Rev. 
C 96, 024003 (2017)    [Editors’ Suggestion]

o “Exploring Bayesian parameter estimation for chiral effective field theory using 
nucleon-nucleon phase shifts” (2018)  [just submitted to J. Phys. G]

o “A Gaussian Process Model for Continuous Truncation Errors in Effective Field 
Theories” [with M. Pratola; in preparation]
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Importance of a prior for naturalness

Bayesian chiral EFT 15

Table 2. Table of LEC values at di↵erent E

max

in the 1

P

1

channel using the potential
at N3LO, where there are two contact LECs. The fit is to the partial wave cross section
with the larger uncertainties used in section 4. No variance was added to account for
the EFT truncation uncertainty (�y

th

= 0). We compare the median LEC values
and their central 68% credible intervals extracted using four di↵erent widths ā for the
Gaussian naturalness prior for a range of E

max

values.

C

1P1

D

1P1

E

max

[MeV] ā = 1 ā = 2 ā = 5 ā = 10 ā = 20 ā = 1 ā = 2 ā = 5 ā = 10 ā = 20

25 1.5+0.2

�0.2

1.7+0.5

�0.3

2.4+2.2

�0.8

5.2+6.1

�3.3

12+14

�8

0.0+0.9

�0.9

0.5+1.6

�1.7

2.5+3.2

�3.0

6.3+4.8

�5.0

11+7

�7

50 1.7+0.2

�0.2

1.9+0.6

�0.3

2.8+2.1

�1.0

5.4+5.7

�3.0

12+14

�8

0.1+0.8

�0.8

0.9+1.5

�1.4

3.2+2.9

�2.6

6.6+4.5

�4.2

11+7

�7

75 1.8+0.2

�0.2

2.0+0.5

�0.3

3.0+2.0

�1.0

4.6+5.0

�2.2

8.5+12

�5.3

0.4+0.8

�0.8

1.3+1.3

�1.3

3.5+2.7

�2.2

5.8+4.4

�3.4

9.4+6.9

�5.6

100 1.9+0.2

�0.2

2.1+0.5

�0.3

2.7+1.5

�0.7

3.6+3.2

�1.3

4.4+7.0

�2.0

0.6+0.7

�0.7

1.5+1.2

�1.1

3.2+2.3

�1.8

4.6+3.6

�2.6

5.8+6.0

�3.3

125 1.9+0.2

�0.1

2.1+0.4

�0.2

2.4+0.9

�0.4

2.6+1.3

�0.6

2.8+1.8

�0.7

0.8+0.7

�0.7

1.6+1.1

�1.0

2.6+1.8

�1.4

3.1+2.3

�1.6

3.3+2.8

�1.8

150 2.0+0.2

�0.1

2.1+0.3

�0.2

2.2+0.5

�0.3

2.3+0.6

�0.3

2.3+0.6

�0.3

0.9+0.6

�0.6

1.5+1.0

�0.8

2.1+1.3

�1.1

2.2+1.5

�1.1

2.3+1.5

�1.2

175 2.0+0.1

�0.1

2.1+0.2

�0.1

2.1+0.3

�0.2

2.1+0.3

�0.2

2.1+0.3

�0.2

0.9+0.6

�0.5

1.4+0.8

�0.7

1.7+1.0

�0.8

1.8+1.0

�0.8

1.7+1.1

�0.8

200 2.0+0.1

�0.1

2.0+0.1

�0.1

2.0+0.2

�0.1

2.0+0.2

�0.1

2.0+0.2

�0.1

0.9+0.5

�0.5

1.2+0.7

�0.6

1.4+0.7

�0.6

1.4+0.8

�0.7

1.4+0.8

�0.7

So far, all of the posterior pdfs we have considered are tightly determined by the

PWA93 phase shifts. In these cases, the precise data constrain the likelihood so much

that the naturalness prior on the LECs with ā = 5 is largely irrelevant. However, if

we decrease the amount and energy range of data used to constrain the LECs, the

naturalness prior can have a strong e↵ect on the final posterior pdf and quoted LEC

values. In table 2 we give an example of this e↵ect for the 1P
1

channel at N3LO (k = 4).

We present the two LEC values with projected widths from fits to the partial-wave cross

sections, as we will do in section 4, noting the significantly larger uncertainties adopted

(see section 2.3). We consider di↵erent values of E
max

and di↵erent widths ā of the

naturalness prior. (Note: in [21] the impact of ā was visualized using a diagnostic called

an “ā relaxation plot” rather than with tabular data.) We supplement the table with

posterior plots in figure 5 for a subset of the E
max

and ā combinations.

The choice of ā = 1 is the most restrictive prior constraint in table 2. For this ā and

low values of E
max

, which correspond to small amounts of constraining data and a limited

energy range, the estimate of the N3LO contact term D
1P1

is seen to be driven by the

choice of the prior because it is close to zero with a width of unity for the lowest values

of E
max

. This is an example of “returning the prior”, where the likelihood so poorly

constrains the parameter value that the prior is the dominant input rather than the

data. The consequence is that the two LECs are prevented from playing o↵ each other,

leading to a more reliable estimate of C
1P1

. This constraint is released as the prior width

is relaxed from ā = 1 to ā = 20, leading to values of both C
1P1

and D
1P1

for low values
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Chiral EFT expansion of neutron-proton force  [from R. Machleidt]

Q =

momentum,m⇡

⇤�

⇤� ⇡ m⇢ ⇡ 600–700MeV

Constrained by chiral symmetry


