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Ab initio calculations: The nuclear structure hockey stick
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Ab initio calculations: The nuclear structure hockey stick
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Why has the reach of these precision nuclear calculations increased?
* Effective field theory (EFT) and related techniques have enabled an

explosion of new solution methods that grow polynomially with size
* New challenge: robust and verifiable theoretical error estimates



Tower of emergent phenomena in nuclear physics
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e Each order includes
nontrivial functions;
equations to be solved are
highly nonlinear

* Expectation is that output
results are expansions in a
small parameter, but not a
Taylor expansion



EFT and prior knowledge: A relativity Taylor-expansion analogy

! Suppose Einstein didn’t develop relativity.
T The kinetic energy K(v2) of an electron
E_ = would still deviate from the Physics 101
formula. How would we determine it from
measurements at small speed v?
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EFT and prior knowledge: A relativity Taylor-expansion analogy
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Suppose Einstein didn’t develop relativity.
The kinetic energy K(v?) of an electron
would still deviate from the Physics 101
formula. How would we determine it from
measurements at small speed v?

relativistic . . .
Physics =Taylor expansion in v2 only:

1
K(v?) ~ §mv2[a0 + agv? + agv* + O(v°)]

What do we know about the a,?

Newtoman

0.5¢

|
J
R Ep——— — ————————— ———— —————

~
o



.,
2moet+

translational kinetic energy, Fine

mc-r

EFT and prior knowledge: A relativity Taylor-expansion analogy

A Suppose Einstein didn’t develop relativity.

The kinetic energy K(v?) of an electron
would still deviate from the Physics 101
formula. How would we determine it from
measurements at small speed v?
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relativistic

Physics =Taylor expansion in v? only:

1
K(v?) ~ va2[ao + agv? + agv* + O(v°)]

What do we know about the a,?

Newtoman

|
0 0.5¢

|
|
I
|
I
I
|
|
|
|
|
|
|
I
|
I
|
|
|
+
|
I
|
I
c

Physics input: there is only one (unknown) scale of velocity in the problem; call it “c”
1
— K(v*) ~ 5771’02[[)0 + ba(v/c)? + ba(v/c)* + O(1)(v/c)® + - -]

The expectation is that the b; are natural, meaning of order unity.
We can check this case: b,=1, b,=3/4, b, =5/8, bg= 35/64, ... = natural!
Model the discrepancy coefficient. Can we determine the breakdown scale c?



Previous UQ: Error bands in chiral EFT

Until recently, little examination of theoretical uncertainties

(cf. experimental UQ), which are systematic errors

Previous work used EFT cutoff (regulator parameter)

variation to determine bands:
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Previous UQ: Error bands in chiral EFT

Until recently, little examination of theoretical uncertainties

(cf. experimental UQ), which are systematic errors

Previous work used EFT cutoff (regulator parameter)
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Problems with this as UQ (see right figure):

e unnatural systematics of bands

e often underestimates uncertainty
e statistical interpretation???

* Is the EFT actually working?
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Previous UQ: Error bands in chiral EFT

Until recently, little examination of theoretical uncertainties

(cf. experimental UQ), which are systematic errors

Previous work used EFT cutoff (regulator parameter)
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What kind of statistics problems do we have?

NN force 3N force
A-less EFT ‘ A contributions A-less EFT ‘ A contributions
o HX - |- -
W R

X

Having obtained a force, one needs to propagate uncertainties
through nonlinear calculations (which are usually very expensive).



What kind of statistics problems do we have?

NN force 3N force
A-less EFT | A contributions A-less EFT | A contributions
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Parameter estimation (inverse problem)
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X

Having obtained a force, one needs to propagate uncertainties
through nonlinear calculations (which are usually very expensive).



What kind of statistics problems do we have?

NN force | 3N force
A-less EFT )l( A contributions )| A-less EFT | A contributions

o X - | - -
MEEEIE
X

| b |FIH
SIS

“Bayesian model selection”: What are the best degrees of freedom?

Having obtained a force, one needs to propagate uncertainties
through nonlinear calculations (which are usually very expensive).



What kind of statistics problems do we have?

||| NN force

3N force

A-less EFT

A contributions

A-less EFT

I A contributions

“HX

F b
= X

-

Truncation error (discrepancy): omitted higher-order diagrams

Having obtained a force, one needs to propagate uncertainties
through nonlinear calculations (which are usually very expensive).



Bayesian Uncertainty Quantification: Errors for Your EFT

B Prior
a
B Posterior Overall goal:

® True value Full uncertainty quantification (UQ) and associated

diagnostics for EFT predictions using Bayesian statistics
" a Dick Furnstahl (OSU) Harald Griesshammer (GWU)
Jordan Melendez (OSU) Daniel Phillips (OU)
BUQEYE Collaboration Matt Pratola (OSU Statistics) ~ Sarah Wesolowski (SU)

* Experimentalists have long been careful practitioners of statistics, but theorists
have not. In nuclear physics, the advent of precision calculations requires
verifiable, robust theory UQ.

* Interaction with statisticians has been invaluable, including members of the
SciDAC NUCLEI project and participants in workshops such as the 4-week INT
program on “Bayesian Statistics in Nuclear Physics”, e.g., Derek Bingham, Dave
Higdon (INT co-organizer), Earl Lawrence, lan Vernon, Frederi Viens, ...

* A particularly exciting spin-off is we have found physics discovery with statistics!



Representing an EFT expansion: Toy model example

- Theoretical predictions could look like the following
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* The y; are predictions depending on x (could be energy, scattering angle, ...)
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Representing an EFT expansion: Toy model example

- Theoretical predictions could look like the following
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Representing an EFT expansion: Toy model example

- Theoretical predictions could look like the following
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* The y; are predictions depending on x (could be energy, scattering angle, ...)



Representing an EFT expansion: Toy model example

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.

Yo = Yo
Predictions Differences in Predictions
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* The y; are predictions depending on x (could be energy, scattering angle, ...)
* V. 1S are reference scale, Q is a dimensionless expansion parameter

c.f. K(v?) = (mv?/2)[bg 4 ba (v/c)* +bs(v/c)* + O1)(v/c)* + -]

Yref Q2



Representing an EFT expansion: Toy model example

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
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Yref Q2
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Representing an EFT expansion: Toy model example

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
© AYp = YrerCnQ"
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* V. 1S are reference scale, Q is a dimensionless expansion parameter

c.f. K(v?) = (mv?/2)[bg 4 ba (v/c)* +bs(v/c)* + O1)(v/c)* + -]

Yref Q2



Representing an EFT expansion: Toy model example

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
© AYp = YrerCnQ"

Yo = Yref [COQO}
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* The y; are predictions depending on x (could be energy, scattering angle, ...)
* V. 1S are reference scale, Q is a dimensionless expansion parameter

c.f. K(v?) ~ (mv?/2)[bo + ba (v/c)? +ba(v/c)* + O(1)(v/e)* + - -]

Yref Q2



Representing an EFT expansion: Toy model example

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
© AYp = YrerCnQ"

Y1 = Yref [COQO + C1Q1]
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* The y; are predictions depending on x (could be energy, scattering angle, ...)
* V. 1S are reference scale, Q is a dimensionless expansion parameter

c.f. K(v?) = (mv?/2)[bg 4 ba (v/c)* +bs(v/c)* + O1)(v/c)* + -]

Yref Q2



Representing an EFT expansion: Toy model example

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
© AYp = YrerCnQ"

Y2 = Yref [COQO +0Q' + CzQz]
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* The y; are predictions depending on x (could be energy, scattering angle, ...)
* V. 1S are reference scale, Q is a dimensionless expansion parameter

c.f. K(v?) = (mv?/2)[bg 4 ba (v/c)* +bs(v/c)* + O1)(v/c)* + -]

Yref Q2



Representing an EFT expansion: Toy model example

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
© AYp = YrerCnQ"
Y3 = Vrer [C0Q° + ¢1Q" + ©Q° + ¢3Q°]

Predictions Differences in Predictions Prediction Coefficients
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* The y; are predictions depending on x (could be energy, scattering angle, ...)
* V. 1S are reference scale, Q is a dimensionless expansion parameter

c.f. K(v?) = (mv?/2)[by + bs (v/c)? +bs(v/c)* + O(1)(v/c)* + - -]

Yref Q2



Does the toy model example look like the real world?

Use EKM semi-local interactions applied to NN scattering as example.
Eur. Phys. J. A 51, 53 (2015) and Phys. Rev. Lett. 115, 122301 (2015)

Angular observables overall: as a function of angle at single energy
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Does the toy model example look like the real world?

Use EKM semi-local interactions applied to NN scattering as example.
Eur. Phys. J. A 51, 53 (2015) and Phys. Rev. Lett. 115, 122301 (2015)

Angular observables overall: as a function of energy at single angle
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Representing an EFT expansion: Toy model example

R
Vi = yrefZCnQn
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Representing an EFT expansion: Toy model example

R
: Yn — VYn—1
Vi = Yref ) CnQ" | Ch = ——on—
h nz:% | Yrer@Q"
Best Prediction Prediction Coefficients
0 —_— )3

—10

—20

0.0 0.2 0.4 0.6 0.8 1.0




Representing an EFT expansion: Toy model example

Main equation

(©.@) I
' Yn — Yn—1
Y =Yrer ) Q" | Ch = ——~—
g | YrerQ"
Full Prediction Higher Order Coefficients
3 C
0 pr(y) [ | ’

Cs
Ce
Oy

—10

—15

pr(cn)

—20

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

* Can we derive pr(y|{y07 coe 7yk:}7 Qa yref) ?
* Can we extract a posterior for the expansion parameter Q?




Hierarchial statistical model

- Decompose prediction

R
X=X+ ) AX,

n="1

Data

[Note: here X; are the observables instead of y,.]



Hierarchial statistical model

- Decompose prediction

R
X=X+ ) AX,

n=1

R
= Aref Z c,Q"
n=0

Parameterization

@\ /@

Data

[Note: here X; are the observables instead of y,.]



Hierarchial statistical model

Hyperparameters - Decompose prediction

k
| X=X+ ) AX,

n=1

R
n
= Aref Z cnQ
n=0
A\ 4

@ @ - Put priors on ¢, (and Q)
\ / Cn |6 ~ GP(, 0°Ry)

Data

l Parameterization

[Note: here X; are the observables instead of y,.]



Hierarchial statistical model

Hyperparameters - Decompose prediction

k
| X=X+ ) AX,

n=1

R
n
= Aref Z cnQ
n=0
A\ 4

@ @ - Put priors on ¢, (and Q)
\ / Cn |6 ~ GP(, 0°Ry)

- Learn @ and Q

Data

l Parameterization

[Note: here X; are the observables instead of y,.]



Hierarchial statistical model

Hyperparameters - Decompose prediction

fe
l Xo=Xo+ > AX;

n=1

R
) n
= ref§ cnQ
n=0
A\ 4

@ @ - Put priors on ¢, (and Q)
NS N €16 % GP (11, 0Ry)

@ - Learn @ and Q

Data Prediction - Predict pr(&' | D)

l Parameterization

[Note: here X; are the observables instead of y,.]



Gaussian process priors

iid

Cn |6 ~ GP(p,0°Ry)




Gaussian process priors

iid

Cn |0 ~ gp(,u,O'ZRé)

Conjugate priors:
pr(plo?) pr(o?)




Gaussian process priors

cn|o? = N(0,0?)

Contrast the Gaussian process model with our initial point-wise model.



Error bands for real-world calculations: EKM, R =0.9 fm

Curve-wise Point-wise
Differential Cross Section Residuals: Conditional + Error Differential Cross Section Residuals
L5 1 — N'LO | ] =—— NLO L5 1 — N'LO | ] — NLO
0 M 0.0 _—J
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30 -
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= — NLO | ] — N'LO
00 == —
15 4 |
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45
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0 (deg) 0 (deg) 0 (deg) 0 (deg)

Seems systematic and reasonable. How do we know it is working?



Error bands for real-world calculations: EKM, R =0.9 fm
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Seems systematic and reasonable. How do we know it is working?




Success Rate (%), N = 51

Model checking: Credible interval diagnostics

k n
Melend t al., PRC 96, 024 2017
elendez et al., , 024003 (2017) X(p):onann< p )
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A 1 °* Here: total cross section at many energies
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the p% error band for prediction at kt" order?
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* Another check: vary expansion parameter
* A >1indicates larger breakdown favored
* A< 1indicates smaller breakdown favored
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Success Rate (%), N = 51

Model checking: Credible interval diagnostics

Melendez et al., PRC 96, 024003 (2017)
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* Choose N predictions of observable (N=51)

* Here: total cross section at many energies

* How often does the (k+1)™ prediction lie in
the p% error band for prediction at kt" order?

* Another check: vary expansion parameter
* A >1indicates larger breakdown favored
* A< 1indicates smaller breakdown favored



Success Rate (%), N = 51

Model checking: Credible interval diagnostics

Melendez et al., PRC 96, 024003 (2017)
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k n
X(p) = Xo Z cp A" (ﬁ)

n=0

* Choose N predictions of observable (N=51)

* Here: total cross section at many energies

* How often does the (k+1)™ prediction lie in
the p% error band for prediction at kt" order?

* Another check: vary expansion parameter
* A >1indicates larger breakdown favored
* A< 1indicates smaller breakdown favored

First time applied to effective field theories. What other model checking?



Physics discovery: What is the EFT breakdown scale?

pr(Ap|c): Total Cross Section pr(Ap|c): Differential Cross Section pr(Ap|c): Spin Observables
| | |
— N’LO — N’LO — N’LO
|
Uncorrelated — N'LO j‘\
0 300 600 900 1200 0O 300 600 900 1200 0O 300 600 900 1200
Ay [MeV] Ay [MeV] Ay [MeV]
pr(Ap|c): Total Cross Section pr(Ap|c): Differential Cross Section pr(Ap|c): Spin Observables
| | |
— N3LO —— N3LO — N’LO
- |
f i | | |
Correlated —T N'Lo N'LO ‘ —T N'LO
0 300 600 900 1200 O 300 600 900 1200 O 300 600 900 1200
Ap [MeV] Ap [MeV] Ap [MeV]

* First extraction of EFT breakdown scale from convergence pattern
* Accounting for correlations with GP yields more consistent results



Success Rate (%), N = 17

Bayesian Model Checking: identifying failures of physics
Melendez et al., PRC 96, 024003 (2017)
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* Compare two choices of regulator parameter R. Both give good fits to the NN
data, but are they both behaving as expected from effective field theory?
* Look order-by-order for deviant behavior. R=0.9 fm looks ok.



Success Rate (%), N = 17

Bayesian Model Checking: identifying failures of physics
Melendez et al., PRC 96, 024003 (2017)
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* Compare two choices of regulator parameter R. Both give good fits to the NN
data, but are they both behaving as expected from effective field theory?

* Look order-by-order for deviant behavior. R=0.9 fm looks ok.

* But R=1.2 fm does not! = points to “regulator artifacts” that distort physics



How much data to use when fitting EFT parameters?

* An EFT calculation has smaller truncation errors
at low energies but where to stop using data 12
for parameter estimation?

v

max — k + 1, corr. |

* The 1P, example shows a least squares fit with .
no truncation error (purple triangles and band) ©
shows no stability in the parameter value as a
function of the maximum energy used. 0.4

c=09 |

ck
Kmax — 00, COIT.

V¥ Aym =0

| | | |
50 100 150 200 250 300
Frax [MeV]

e But our discrepancy model (green) generates a
stable prediction with a more robust 68% band.

0.0



How much data to use when fitting EFT parameters?

1.50

I I | | |
kmax = k + 1, corr. ]

- ]
—A— Kkmax — 00, corr. |
—V— Ay, =0 1

An EFT calculation has smaller truncation errors
at low energies but where to stop using data _
for parameter estimation? 5 1.20

1.35

The 1P, example shows a least squares fit with
no truncation error (purple triangles and band)
shows no stability in the parameter value as a
function of the maximum energy used.

But our discrepancy model (green) generates a
stable prediction with a more robust 68% band.

The 1S, example shows that at high enough
order, the parameters are well determined with

: : | |
or without the theory discrepancy model. 0 100 150 200 250 300
Erax [MeV]




More physics discovery through statistics: Redundant operators

Cro— +0.00
C3S1 - _0'78—0 00

* One example (of many) of how statistical
analysis has led to physics discover, here
while doing parameter estimation

| 351 = 0.82200!

* Projected posterior plots for NN
. w1 7%
parameters generally are close to Gaussian.  _<°
6} B
ch\'
Css1-3p1 = 0.6759!
i
8
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More physics discovery through statistics: Redundant operators

One example (of many) of how statistical
analysis has led to physics discover, here
while doing parameter estimation
Projected posterior plots for NN
parameters generally are close to Gaussian.
When they are not, it is a signal to look for
a physics reason. Led us to a redundancy,
not noticed for 10 years!
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1
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1
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More physics discovery through statistics: Redundant operators

Clhy = 0554588

One example (of many) of how statistical
analysis has led to physics discover, here o~ oo
while doing parameter estimation o
Projected posterior plots for NN %Q'@o

. O
parameters generally are close to Gaussian. o
When they are not, it is a signal to look for - Pl =300
a physics reason. Led us to a redundancy, L
not noticed for 10 years!. |
Eliminating removes 3 of 15 parameters k4 IR
and leads to much better interactions! Dl

D(llso)p2 2 +D(ISO) (p +p ) 0 ZmMTPZ(iOMeV
1 Fi:htzPW/:;g
= Z(D(lso) + 2D, 50)) (* +1'%)? 45\ -
— PWA93
1 g
- Z(D(llso) - 2D(2150))< ? —p’2)2 EEY
= (D(11so) + 2D(2150))P2 2+ D(1so)( 2 —p?)? s
0 \\

0 40 80 120 160 200 240 280
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Summary: Bayesian Statistics for EFTs

* In this era of precision nuclear physics, robust UQ for theoretical calculations has
become essential, but development of appropriate tools is still in its infancy
* Bayesian statistical methods are particularly well suited for effective field theories

* |s the effective field theory behaving as advertised? Is there systematic
improvement at the predicted rate?

* |dentifies problematic implementations (e.g., are we dominated by regulator
artifacts or are there redundant operators?)

e Stimulates new ideas such as breakdown scales and correlation length in
energy or angle and enables their extraction
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* Bayesian statistical methods are particularly well suited for effective field theories

* |s the effective field theory behaving as advertised? Is there systematic
improvement at the predicted rate?

* |dentifies problematic implementations (e.g., are we dominated by regulator
artifacts or are there redundant operators?)

e Stimulates new ideas such as breakdown scales and correlation length in
energy or angle and enables their extraction

Model selection opportunities still to be explored, e.g., which are the best degrees
of freedom: nucleons + pions only, nucleons + deltas + pions, nucleons only, ...
Alternative model checking methods

Parameter estimation with curve-wise discrepancy model

Exploring the physics application of the GP hyperparameters

Full propagation of uncertainties to very expensive many-body calculations



Summary: Bayesian Statistics for EFTs

* In this era of precision nuclear physics, robust UQ for theoretical calculations has
become essential, but development of appropriate tools is still in its infancy
* Bayesian statistical methods are particularly well suited for effective field theories

* |s the effective field theory behaving as advertised? Is there systematic
improvement at the predicted rate?

* |dentifies problematic implementations (e.g., are we dominated by regulator
artifacts or are there redundant operators?)

e Stimulates new ideas such as breakdown scales and correlation length in
energy or angle and enables their extraction

Model selection opportunities still to be explored, e.g., which are the best degrees
of freedom: nucleons + pions only, nucleons + deltas + pions, nucleons only, ...
Alternative model checking methods

Parameter estimation with curve-wise discrepancy model

Exploring the physics application of the GP hyperparameters

Full propagation of uncertainties to very expensive many-body calculations

Interactions with statisticians are invaluable!



Thank you!
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Discrepancy distribution

Remember the goal: Our convergence assumptions
Vexp(X) = Y (X, @) + 0Yin (X) + OYexp pr(cn | 0) = GP(n,07Ry)
OYtn(X) = Yrer Z c,Q"
Nn=~R+1

Gaussian sum rules

GN(,[M, 21) + bN(,LLZ, Zz) — N(G/M + b,uz, (1221 + bzzz)

Discrepancy Distribution

R+1 5202(k+1)
1Q Q Re)

pr(5yth | 9) gP (Ntha Zth) =GP ( —Q ayref 1— Qz




Importance of a prior for naturalness

. Cip1 D1py
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Chiral EFT expansion of neutron-proton force [from rR. Machleidt]

LO
(Q/A)°

NLO
(Q/A)?

NNLO
(Q/Ay)?

N?LO
(Q/Ay)*

N*LO
(Q/AY)°

N°LO
(Q/AY)°

2N Force

X

3N Force

Q =

4N Force

5N Force

Constrained by chiral symmetry

momentum, 1m,

Ay
m, ~ 600-700 MeV



