

Christian Drischler

Bayesian Inference in Subatomic Physics | September 17, 2019

This [...] Symposium will facilitate

- **cross-communication** and **potential collaboration** on statistical applications among researchers from mathematics, statistics, and nuclear/particle physics [...]
- try to fill a knowledge gap and provide a unique opportunity for physicists who are unfamiliar with Bayesian methods to start applying them to new problems

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Christian Drischler

Bayesian Inference in Subatomic Physics | September 17, 2019

(First) Direct detection of gravitational waves

ligo.caltech.edu

multi-messenger astronomy

+ Virgo + GEO600

Nobel Prize 2017

Binary Neutron-Star Merger

 $n \sim (1-10) n_0$

Neutron stars

e.g., Watts et al., Rev. Mod. Phys. 88, 021001

1 OUTER CRUST

NUCLEI ELECTRONS

2 | INNER CRUST

NUCLEI ELECTRONS SUPERFLUID NEUTRONS

3 | CORE

SUPERFLUID NEUTRONS SUPERCONDUCTING PROTONS HYPERONS? DECONFINED QUARKS? COLOR SUPERCONDUCTOR?

R ~ (10–14) km *M* ~ (1.4–2.0) *M*_{sun}

3

 $n_0 \sim 2.7 \cdot 10^{14} \text{ g cm}^{-3}$

Erler et al., Nature 486, 509–512

see also Hebeler et al., ARNPS 65, 457

Next-generation supercomputers

202 752 CPU Cores 27 648 NVIDIA GPUs 122.3 peta flops

Summit @ ORNL

Truncation errors in effective field theory for infinite nuclear matter Central quantity

Equation Of State

ground-state energy per particle of a system

$$rac{E}{A}\left(n,\,eta,\,T
ight)$$

total density neutron excess temperature

consisting of **Neutron** and **protons**

$$n = n_n + n_p$$

neutron | proton density

$$\beta = \frac{n_n - n_p}{n}$$

Homogeneous nuclear matter

theoretical **testbed** for nuclear forces with important consequences for EOS

saturation point ($n_0 \sim 0.16 \text{ fm}^{-3}$, $a_v \sim 16 \text{ MeV}$)

incompressibility (K ~ 240 MeV)

symmetry energy ($E_{sym} \sim 32 \text{ MeV}$) and its **slope** ($L \sim 55 \text{ MeV}$) at n_0

$$11.1 \,\mathrm{km} \leqslant R_{1.4 \,\mathrm{M}_{\odot}} \leqslant 12.7 \,\mathrm{km}$$

```
Hagen et al., Nat. Phys. 12, 186
```

$$\frac{E}{A}(\beta, n) = \frac{E}{A}(\beta = 0, n) + \beta^2 E_{\text{sym}}(n)$$

Homogeneous nuclear matter

see, e.g., Greif et al., MNRAS 485, 4

Mass-radius relation

see, e.g., Greif et al., MNRAS 485, 4

see also Hoppe, CD, Hebeler et al., PRC 100, 024318

Derived quantities: pressure

September 17, 2019 | Bayesian Inference in Subatomic Physics | Christian Drischler | 14

Leonhardt, Pospiech, Schallmo, Braun, CD, Hebeler, Schwenk, arXiv:1907.05814

Acquisition (arbitrary units)

0.20

0.25

0.30

0.15

gp density

0.10

 $P(n, \beta) = n^2 \frac{\partial E/A}{\partial n}(n, \beta)$

EFT seems to match first constraints from QCD at intermediate densities

Truncation errors in effective field theory for infinite nuclear matter Hierarchy of nuclear forces in chiral EFT

e.g., Machleidt, Entem, Phys. Rep. 503, 1

modern approach to nuclear forces:

- QCD is nonperturbative at the low-energy scales of nuclear physics
- use relevant instead of the fundamental degrees of freedom: *e.g.*, **nucleons** and **pions**
- pion exchanges and short-range contact interactions (∝ LEC)
- systematic expansion enables improvable uncertainty estimates

$$Q = \max\left(\frac{p}{\Lambda_b}, \frac{m_\pi}{\Lambda_b}\right) \sim \frac{1}{3}$$

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Krebs, Machleidt, Meißner, ...

Hierarchy of nuclear forces in chiral EFT

e.g., Machleidt, Entem, Phys. Rep. 503, 1

Many new potentials available!

Efficient Monte Carlo framework

CD, Hebeler, Schwenk, PRL 122, 042501

 computational beast: controlled computation of arbitrary interaction or many-body diagrams

Number of diagrams in MBPT

Stevenson, Int. J. Mod. Phys. C 14, 1135

The number of diagrams increases rapidly!

Integer sequence A064732:

Number of labeled Hugenholtz diagrams with *n* nodes.

Number of diagrams in MBPT

Stevenson, Int. J. Mod. Phys. C 14, 1135

The number of diagrams increases rapidly!

Integer sequence A064732:

Number of labeled Hugenholtz diagrams with *n* nodes.

see also Hebeler et al., ARNPS 65, 457

Truncation errors in effective field theory for infinite nuclear matter Neutron and nuclear matter at N³LO

CD, Hebeler, Schwenk, PRL 122, 042501

Neutron and nuclear matter at N³LO

CD, Hebeler, Schwenk, PRL 122, 042501

September 17, 2019 | Bayesian Inference in Subatomic Physics | Christian Drischler | 23

Truncation error analysis: $\Lambda = 450 \text{ MeV}$

with Melendez, Furnstahl, Phillips

Symmetric matter

September 17, 2019 | Bayesian Inference in Subatomic Physics | Christian Drischler | 24

Truncation error analysis: $\Lambda = 450 \text{ MeV}$

with Melendez, Furnstahl, Phillips

Truncation errors in effective field theory for infinite nuclear matter Questions for discussion(s) I

What is the physical interpretation of the correlation length in nuclear matter? Is there a 1:1 mapping from the incompressibility to that correlation length? How could we make use of that information?

Our analysis infers a most probable **expansion parameter**. **Should** one then assume a momentum scale (e.g., k_F) to convert this to a breakdown scale? Or, should one assume a breakdown scale (e.g., Λ_b) from an NN analysis and convert the expansion parameter to a momentum scale in infinite matter?

HOW should uncertainties from the EOS be propagated to derived quantities, *e.g.*, pressure or speed of sound? Will the use of GPs as interpolants for the EFT coefficients mean that it is easy to reconstruct such quantities which are computed as **derivatives of the EOS**?

Questions for discussion(s) II

What is the 2D 68% confidence region on the saturation point? How does this change if that region is conditioned not just on EDFs, but also on information from *ab initio* calculations?

What would it take to include data on the empirical saturation point, or constraints on the neutron-matter EOS from neutron-star observations, in fits of nuclear forces from chiral EFT?

HOW should we **SCORE** different chiral EFT forces against such data? How many orders are enough given the current accuracy of *experimental* constraints on infinite matter? What degrees of freedom, *e.g.*, delta-full vs. chiral EFT, do we need to consider?

HOW should we deal with soft potentials that cause suppressed contributions from odd chiral orders? Separate expansions for even | odd orders? What are the implications for truncation errors?

Summary and outlook

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Collaborators: R. Furnstahl J. Melendez D. Phillips K. Hebeler K. McElvain A. Schwenk

